Identification and Development of African Swine Fever Virus Vaccine **Candidates by Reverse Vaccinology**

Dr. Mangkey Bounpheng-TVMDL Dr. Tammy Beckham- TVMDL/FAZD Center Dr. Alfonso Clavijo- PAHO Dr. Garry Adams- Texas A&M University Dr. Waithaka Mwangi- Texas A&M University Dr. Yonggun He- University of Michigan Dr. Allen Xiang- University of Michigan Dr. Jorge Osorio- University of Wisconsin Dr. Lance Ford- BIOO Scientific Dr. Joe Krebs- BIOO Scientific Dr. Sandesh Subramanya- BIOO Scientific Dr. John Neilan- DHS S&T, PIADC (DHS Technical Representative) Dr. David Brake- DHS S&T, PIADC

UNIVERSITY OF MICHIGAN

TEXAS A&M IVERS

Science and Technology

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

African swine fever (ASF)

- Highly contagious viral disease with significant economic impact
- Infections often fatal and characterized by fever, hemorrhages, ataxia, and severe depression
- Occurs in several forms ranging from highly lethal to sub-clinical
 - Acute forms> pronounced hemorrhages and death in 3 to 7 DPI
 - Sub-acute and chronic forms> high fever, staggering gait, cough, diarrhea, purple skin, and death in 20-45 DPI
- Affects all age groups, without gender preference
- Caused by ASFV, large enveloped dsDNA Arbovirus ~190 kb genome

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

African swine fever virus (ASFV)

- Targets and replicates in macrophages
- Natural hosts are warthogs, bush pigs, and giant forest hogs
- Ornithodoros ticks are reservoirs and vectors
- Resistant to low temperatures; inactivated by 56°C for 70 mins
- Persist in blood, tissues, secretions, and excretions
- Persist 399 days in Parma hams, 104 days in frozen meat or chilled meat, 30 days in pepperoni & salami (Rev. sci. tech. Off. int. Epiz., 16 (1), 65-78)
- Transmission mainly through oro-nasal route
 - direct: contact b/w sick and healthy animals
 - indirect transmission: biological vectors, swill, fomites including premises, vehicles, implements, and clothes

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

fazd.tamu.edu

3

African swine fever (ASF)

- ASF was first identified in Kenya in 1910 as acute haemorrhagic fever with high mortality (up to 100%) in domestic pigs. Outbreaks occurred when domestic pigs came into contact with wild pigs.
- ASF has expanded from its origin in Africa to Southern Europe, the Caribbean, Brazil, Eastern Europe, and Northwest Asia

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASF Global Distribution

www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasedistributionmap: Jan-June 2012 Reporting period

- First case outside of Africa was reported in Portugal, 1957
- Subsequent cases reported in: Spain, 1960-95; France, 1964/67/77; Italy, 1967/80; Malta, 1978-79; Sardinia, 1978-present; Belgium, 1985; Netherland, 1986 Cuba, 1971/78-80; Dom. Rep., 1978-81; Haiti, 1979-84 Brazil, 1978-81

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASF in Trans Caucasian Countries (TCC) and Russia

www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasedistributionmap: Jan 2007-June 2013 Reporting period

Inset: June 2013 reporting period, outbreaks in Georgia, Nigeria, Chad, Cameroon, and Central African Republic

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASF Upsurge

- Progressive spread likely due:
 - Economic crisis leading to swill feeding
 - Globalization and increased movements and people and products

Table 1377. Meat Consumption by Type and Country: 2009 and 2010 In thousands of metric tons (56,668 represents 56,668,000). Carcass weight basis for beef, yeal, and pork. Broiler (chicken,

- Growth of the pig sector in Africa, with countries more than doubling their populations in less than a decade
- Global pig production growth due to growing demand

16-week-old) weight based on ready-to-cook equivalent]								
Country	Beef and veal ¹		Country	Pork		Country	Broiler ²	
Country	2009	2010 ³	Country	2009	2010 ³	Country	2009	2010 ³
World	56,668	56,544	World	100,268	102,953	World	71,860	75,127
United States	12,239	12,040	China ⁴	48,823	51,097	United States	12,940	13,463
EU–27 ⁵	8,262	8,185	EU-27 ⁵	21,057	21,271	China ⁴	12,210	12,457
Brazil	7,374	7,592	United States	9,013	8,653	Brazil	8,032	9,132
China ⁴	5,749	5,589	Russia	2,688	2,773	EU-27 ⁵	8,692	8,779
Russia	2,347	2,307	Brazil	2,423	2,577	Mexico	3,264	3,344
Argentina	2,727	2,305	Japan	2,467	2,485	Russia	2,966	2,923
India 6	1,905	1,930	Vietnam	1,876	1,881	India	2,549	2,649
Mexico	1,971	1,944	Mexico	1,770	1,774	Japan	1,978	2,063
Pakistan	1,461	1,491	Korea, South	1,480	1,539	Iran	1,542	1,660
Japan	1,211		Philippines		1,358	South Africa	1,443	1,514
Canada	1,016	999	Ukraine	713		Argentina	1,327	1,395
Other countries	10,406	10,938	Other countries	6,660	6,750	Other countries	14,917	15,748

¹ May include meat of other bovines. ² Excludes chicken paws. ³ Preliminary data. ⁴ See footnote 4, Table 1332. ⁵ European Union-27: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and United Kingdom. ⁶ Includes buffalo.

Source: U.S. Department of Agriculture, Foreign Agricultural Service, *Livestock and Poultry: World Markets and Trade*, annual. See also http://www.fas.usda.gov/currwmt.asp.

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE WWW.CENSUS.gov/compendia/statab/2012/tables/12s1377.pdf

ASF Impact

- Socioeconomic impact:
 - Negative impact on development of pig production sector
 - Constraint to income and food security to small production sector
 - Financial losses due to high mortality, trade restrictions, & control strategies
- Russian Federation:
 - ASF has persisted since 2008 and continues to spread
 - Since 2007 to mid-2012,
 600,000 pigs have died/culled
 - Overall losses estimated at 1 billion USD (www.fao.org/ag/empres.html)

Figure 1. Yearly detections of ASFV in the Russian Federation shown separately for wild boar (left) and domestic pigs (right) from 14 November 2007 to 29 December 2012.
Figures in parenthesis next to the year represent the number of outbreaks or virus detections in meat/carcasses. Crossed circle indicates the first known incursion of ASF into the Russian Federation. The only outbreak of ASF (31 July 2012) in Ukraine is also show.

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASF Control

- No drugs for treatment or cure
- No vaccine
- Strict biosecurity is main prevention strategy
- Culling/stamping out is control strategy
- Early detection can expedite control measures and mitigate disease outbreak

Carcasses of pigs prepared to be destroyed by burning as a part of disease control measures at an ASF outbreak site in the Russian Federation. © Andrey Gogin

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASF Vaccine Development

- Critical countermeasure
- Inactivated virions do not induce protection
- Attenuated vaccine
 - Historically unsuccessful and unsafe
 - Produce adverse reactions, chronic forms, and death
- Good prospects for vaccine development :
 - Pigs surviving infection develop homologous protective immunity
 - Pigs immunized with low virulent and attenuated viruses can be protected against challenge with virulent viruses
 - Cross-protection can be induced
 - Antibody provide partial protection and delay onset of clinical signs
 - Humoral and cellular immunity are required
 - Natural Killer and CD8+ T cells are important components

Desirable Vaccine Product Requirements

- Efficacy: prevents virus amplification; effective for all ages; quick onset of protection, 7 days or less
- Safety: no reversion to virulence for LAVs
- Single dose
- Easy manufacturing, fast scale-up, supply, and distribution
- Robust long term storage
- DIVA compatible; differentiate infected from vaccinated animals
 - Compatible with control and eradication program
- Low cost

Strategy & Considerations of Vaccine Platforms

- Live attenuated virus :
 - Protection has been demonstrated
 - Potential of reversion to virulence and persistence
 - No simplified DIVA strategy
- Subunit vaccines :
 - Limited protection data
 - Require extensive effort for protective antigens identification
 - Potential strengths include safety, easy manufacturing and scale-up, low cost, and DIVA compatible
 - "Must have" to eliminate disease

Our Approach

 Multi-institutional, inter-disciplinary team funded through DHS Broad Agency Announcement (BAA)

- Reverse vaccinology will be used to identify novel in silico candidates
- Two protein expression and delivery platforms will be evaluated:
 - Mammalian cell culture
 - Viral-vectored
- Recombinant vaccine candidates will be tested for immunogenicity and safety in pigs

We anticipate that candidate vaccines will be highly immunogenic and induce strong humoral and cellular responses in pigs

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Conventional Vaccinology

fazd.tamu.edu

Modified from Nature reviews, 2006. 4:932-942 14

Reverse Vaccinology

Key Features of Reverse Vaccinology

Conventional vaccinology	Reverse vaccinology				
Uses the most abundant antigens during disease	Analyses all antigens produced, whether abundant or not				
Organism must be cultivable	 Organism does not need to be cultivable 				
Animal models required	Animal models required				
High-throughput expression and analysis are not required	High-throughput expression and analysis are important				
Antigen identification is usually time consuming	 Antigen identification is rapid 				
Only structural proteins are considered	Non-structural proteins are analysed				
Polysaccharides and lipopolysaccharides can be used as antigens	Non-protein antigens, such as polysaccharides and lipopolysaccharides, cannot be identified				
*Table modified, with permission, from REF. $6 \odot$ (2000) Elsevier Science.					

Nature Reviews Microbiology. 2008: 6:334-335

Reverse Vaccinology Funnel for MenB Vaccine

600 potential candidates through selection for surface-exposed or secreted proteins

350 proteins successfully expressed in E.coli

344 proteins purified and used to immunize mice

91 novel surface-exposed proteins identified WB, ELISA, FACS

> 28 novel proteins have bactericidal activity

5 top candidates

3 proteins +OMVs

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

4CMenB success

- First RV based licensed (2012) vaccine for human
- Compose of 4 components (fHbp, NadA, NHBA, and OMVs) to "increase the spectrum of vaccine coverage, minimizing the possibility of bacterial evasion and the emergence of selection mutants" (Serruto et al, Vaccine. 2012)
- fHbp and NHBA-evasion from complement pathway> pathogen survival
- NNadA-mediate adhesion to and entry into cells
- All proteins related to virulence

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Serruto et al, Vaccine. 2012 18

Our approach overview

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

It is challenging to apply reverse vaccinology without a comprehensive pipeline

→ To address this challenge, Vaxign was developed

Dr. Yongqun "Oliver" He Dr. Allen Xiang

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

fazd.tamu.edu

20

Vaxign: <u>Va</u>ccine Des<u>ign</u> System

Vaccine target prediction pipeline for reverse vaccinology

- The 1st web-based reverse vaccinology system
- Freely available: <u>http://www.violinet.org/vaxign</u>

He Y, Xiang Z, Mobley HLT. Vaxign: the first web-based vaccine design program for reverse vaccinology and an application for vaccine development. Journal of Biomedicine and Biotechnology. 2010, Article ID 297505.

FAZD CENTER NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Reverse Vaccinology Criteria

- 1. Transmembrane domains
 - ✓ >2 α -helix domains → difficult to isolate
- 2. Adhesin probability
 - ✓ Adhesin is important for pathogen invasion
- 3. MHC-Epitope binding
 - ✓ MHC class I epitope \rightarrow cell-mediated immunity
 - ✓ MHC class II epitope \rightarrow antibody response
- 4. Sequence conservation and exclusion
 - Shared genes in pathogens but not in avirulent strains
- 5. Similarity to host proteins
 - ✓ Avoid autoimmunity or immune tolerance

Complete ASFV Genomes Utilized for RV Comparison and Ranking

Accession	Complete genome	Host	Virulence	Length bp	No. ORFs
ALLESSION	complete genome	ΠΟΣΙ	virulence	Length bb	NU. UKFS
AY261360	ASFV Kenya 1950	Domestic pig	high	193886	161
AY261361	ASFV Malawi Lil-20/1 (1983)	Tick	high	187612	160
AY261362	ASFV Mkuzi 1979	Tick	unknown	192714	167
AY261363	ASFV Pretorisuskop/96/4	Tick	high	190324	167
AY261364	ASFV Tengani 62	Domestic pig	high	185689	162
AY261365	ASFV Warmbaths	Tick	unknown	190773	167
AY261366	ASFV Warthog	Warthog	unknown	186528	164
AM712239	ASFV Benin 97/1 pathogenic isolate	Domestic pig	high	182284	156
FN557520	ASFV strain E75	Domestic pig	high	181187	166
FR682468	ASFV Georgia 2007/1	Domestic pig	high	189344	160
AM712240	ASFV OURT 88/3 (avirulent field isolate)	Tick	low	171719	157
NC001659	ASFV BA71V strain, tissue culture adapted	tissue culture	avirulent	170101	160

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

fazd.tamu.edu

23

Reverse vaccinology ranking strategy

- 1. Analysis using the following parameters:
 - ✓ Vaxign rank ORFs (1-160) based on each parameter (below)
 - ✓ Normalize MHC scores to protein length
 - ✓ Include ORFs conserved with swine genome

- 2. Determine candidates protein localization on viral particle (exposed, internal, etc)
- 3. Determine ORF conservation among all available genomes
- 4. Determine gene function by literature search or structural function analysis
- 5. Send top 30 list to ASF team members and DHS for comments before final selection
- 6. Select top 14 candidates for protein expression

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASFV Genome Analysis

- 126 ASFV genes are conserved among all 12 genomes
- These genes are considered as ASFV core genes

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

ASFV 3D structure-based functional analysis

Consensus Prediction of Gene Ontology Terms

Molecular Function			Biological Process			Cellular Component		
GO ID	GO Term	GO-Score	GO ID	GO Term	GO-Score	GO ID	GO Term	GO-Score
GO:0016972	thiol oxidase activity	0.56	GO:0055114	oxidation-reduction process	0.59	GO:0005786	signal recognition particle, endoplasmic reticulum targeting	0.17
GO:0008312	7S RNA binding	0.17	GO:0006614	SRP-dependent cotranslational protein targeting to membrane	0.17	GO:0005886	plasma membrane	0.07
GO:0005525	GTP binding	0.17	GO:0008299	isoprenoid biosynthetic process	0.07	GO:0016021	integral to membrane	0.07
GO:0017111	nucleoside- triphosphatase acti∨ity	0.15	GO:0006807	nitrogen compound metabolic process	0.05	GO:0005739	mitochondrion	0.03
GO:0046872	metal ion binding	0.15	GO:0009405	pathogenesis	0.04	GO:0045263	proton-transporting ATP synthase complex, coupling factor F(o)	0.03
GO:0000287	magnesium ion binding	0.11	GO:0015696	ammonium transport	0.04		Æ 🥿	
GO:0016829	lyase acti∨ity	0.11	GO:0015670	carbon dioxide transport	0.04			
GO:0005515	protein binding	0.07	GO:0072488	ammonium transmembrane transport	0.04			
GO:0016740	transferase acti∨ity	0.06	GO:0055085	transmembrane transport	0.04			7
GO:0016301	kinase acti∨ity	0.04	GO:0008652	cellular amino acid biosynthetic process	0.03			

- Functions of the majority of ASFV proteins are unknown
- Automated protein structure and function predictions tool (I-TASSER)was developed

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

fazd.tamu.edu

Xiang, et al. Pan-genome structure prediction and function annotation of African swine fever virus. (Abstract) ASM, 2012,

I-TASSER Prediction Verification

	Literature Search Results		I-TASSER Results			
Proteins	Function	Protein localization	Molecular Function	Biological Process	Cellular Component	
1	structural attachment protein involved in morphogenesis	viral membrane	protein binding	antigen processing & presentation	membrane	
2	structural protein involved in morphogenesis	viral membrane	metal ion binding	metabolic process	cytoplasm	
3	structural protein involved in host cell binding and entry	viral membrane	catalytic activity	metabolic process	cell part	
4	structural protein involved in morphogenesis	viral outer envelope	protein binding	signal transduction	membrane	
5	glycoprotein that interacts w/lectin found on RBC membrane and play a role in the virus budding, attachment to RBC and virus spread	viral membrane	protein binding	metabolic process/cell adhesin	membrane	
6	glycoprotein that interacts with CD2v; viral C-type lectin with anti-apoptotic properties; host evasion molecule	viral membrane	protein binding	cell proliferation/adhesin	extracellular space and membrane	
7	structural protein involved in host cell binding and entry	viral capsid	protein binding/catalytic activity	metabolic process	viral capsid	

- High Gene Ontology scores (>0.5) correlated with published predicted functions
- Predicted cellular localization and protein binding correlated well (~80%) with published localization

Protein Expression

Candidate #	Expressed in HEK 293	HEK purification capable	Expressed & purified in Baculovirus	Expressed& purified in VV	Recognized by ASFV antiserum	
1	Ν	NA~	Y	WIP	Y(B)	
2	Y	N	Y		Y(B&H)	
3	Y	Y	Y		Y(B&H)	
4	Y	Y	Y	Y	Y(B,H,&V)	
5	Y	Ν	Y		Y(B&H)	
6	Y	Y	Y		Y(B&H)	
7	Ν	NA~	Y		N	
8	Y	Y	Y		Y(B&H)	
9	Ν	NA~	Y		Y(B)	
10	Ν	NA~	Y		Y(B)	
11	Ν	NA~	Y	Y	Y(B&V)	
12	Ν	NA~	Y		Ν	
13	Ν	NA~	Y	WIP	Y(B&V)	
14	Y Y		Y	Y	Y(B,H,&V)	
N/NA~	No/Not Applicable					
Y	Yes					
WIP	Work In	Progress				

- 7 expressed in HEK; 5 purified
- All 14 expressed in and purified from Baculovirus
- All 5 selected for viral vector expressed; 3 purified
- 12 recognized by ASF antiserum by Western Blot

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Antibodies production

- Candidate induced antibodies recognize ASFV BA71V (infected Vero cells 24 hr PI)
- Successfully expressed and purified candidates may be used to generate reagents for diagnostics

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE Dr. John Neilan Dr. David Brake Dr. Tom Burrage

Science and Technology 29

Proof-of-concept studies in pigs

- Immunizations completed
- Evaluate vaccine candidates' immunogenicity in pigs
 - ELISA for antigen specific antibody response
 - ELISPOT assay for the detection of IFN- secreting T-cells
 - [3H]-thymidine for antigen-specific T-cell responses

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Proof-of-concept studies in pigs

Evaluate vaccine candidates' safety

- Daily monitoring during the first 7 dpi
 - Monitor injection site lesions, animal behavior and weight
- Selected injection site biopsies will be taken for histo-pathological analysis

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

Conclusions

- <u>First application</u> of reverse vaccinology for ASF vaccine candidate identification
- <u>Multi-pronged approach</u> using different recombinant expression delivery systems
- Provide ASF vaccine candidates with <u>DIVA</u> <u>capability</u>
- Produce highly valuable <u>diagnostic reagents</u> (MAbs and PAbs) for ASFV detection

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE

THANK YOU

NATIONAL CENTER FOR FOREIGN ANIMAL AND ZOONOTIC DISEASE DEFENSE